If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2-9q+20=0
a = 1; b = -9; c = +20;
Δ = b2-4ac
Δ = -92-4·1·20
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-1}{2*1}=\frac{8}{2} =4 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+1}{2*1}=\frac{10}{2} =5 $
| h+14.1=-14.1 | | 3x-115x-3=3x+9 | | 9(6-z)/8=z | | 3+5w=27 | | 8-x=5x+2 | | 20z^2-92z+96=0 | | 12−5/1 r=2r+1 | | X+3=4x+152x+13 | | (-2x+2)=10 | | 3(x-10)=-9−9 | | 3x/4-2=2 | | 3x/4-2=3 | | u=48-7u | | 6s−4=8(2+41 s) | | y+7+2y=-14 | | 2/3n+7=15 | | 107=x+17 | | 6x+53=2x+25 | | n=13/4=31/6 | | 4-2x+3-3x=4 | | 25-y=38 | | -14=b+5 | | 24-y=38 | | 4x^2+-3x+7=2x^2+x+4 | | 30d^2-89d+63=0 | | -6(v+4)-2=2v+22 | | 1+2x+3=1-3x+2x | | 23-y=38 | | -5j+-2j=14 | | 120=4x-8 | | 22-y=38 | | 5x-2x+3=6x |